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ABSTRACT 

      Due to the increase in the density and multitude of online real time applications 

involving group communication which require a certain degree of resiliency, proactive 

protection of multicast sessions in a network has become prominent. The backbone 

network providing such a service hence needs to be robust and resilient to failures. In 

this thesis, we consider the problem of providing fault tolerant operation for such 

multicast networks that have multiple sources and need to deliver data to pre-defined 

set of destinations. The data is assumed to be delivered in a highly connected 

environment with a lot of nodes, e,g., a dense wireless network. 

      The advent of network coding has enabled us to look at novel ways of providing 

proactive protection. Our algorithm combines network and erasure coding to present a 

scheme which can tolerate predefined amount of failures in the paths from the sources 

to the destinations. This is accomplished by introducing redundancy in the data sent 

through the various paths. Network coding seeks to optimize the resource usage in the 

process. For sources that cannot meet the constraints of the scheme, protection is 

provided at the cost of reduced throughput. 
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CHAPTER 1.   INTRODUCTION 

 

1.1  Overview 

      Several applications like Teleconferencing, video, audio on –demand services 

consume a lot of network bandwidth. In a uni-casting network environment where 

several users are requesting the same video or if they are participating in the same 

teleconference, a number of copies of data packets are required to be sent, leading to 

large bandwidth consumption. It has been observed that for such applications, 

multicasting is a more useful and effective operation. Using multicast services, data 

packets can be sent from one source to several destinations by sharing the link 

bandwidth. An important aspect of providing reliable service through multicast is by 

ensuring that the network is fault tolerant and users still receive data in spite of path 

failures. 

      Many algorithms have been deployed to employ recovery methods for multicast 

networks. They are broadly classified into on demand and pre-planned approaches. 

On- demand approaches (Reactive protection) do not compute backup paths 

beforehand, but do it after a failure in the network has occurred. Hence they have a 

longer recovery time. This is not desirable and acceptable in several real time 

applications which require non-interrupted communication. The second approach 

toward failure recovery is called a pre-planned approach (Proactive protection). As the 

name indicates the backup routes in this case have been pre-defined. Though the 

resources required for this approach is more, it provides for a very short recovery time.  

      Proactive protection can be achieved in many ways. Some of the primitive 

techniques consume almost twice the bandwidth required by the application. These 
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involved providing backups for links and paths separately, much of which was never 

utilized when there were no failures. Hence a considerable amount of bandwidth went 

unutilized.   

      With the advent of network coding [1], concepts from information theory were 

widely initiated into solving research problems in networks. One such idea is borrowed 

from the Forward Error Correction method called erasure coding used in binary 

erasure channels. This involves transforming a smaller message of k symbols into a 

larger message of say n symbols such that a subset of k symbols is enough to recover 

the original message. The same method has also been employed in cryptography for 

key sharing and is called Shamir’s Threshold Sharing Scheme (TSS) .Authors in [2] 

applied this scheme for fault tolerance in multicast networks. In the scheme, n disjoint 

trees from the source to the multicast destinations carry packets that contain the 

original as well as redundant data. At any of the receiver only k out of the n packets 

are sufficient for the recovery of original data. Hence the scheme can support 

breakdown of up to n-k paths. We extend this idea for multicast networks involving 

multiple source inputs. Using network coding, we reduce the amount of overhead 

needed to deliver data to the receivers from multiple sources while retaining network 

resilience. 

   

1.2   The Multicast Fault Tolerance Problem and its Applications 

      Multicast involves sending data from one source to various destinations. The 

network through which the data is being sent has to be resilient to breakdowns. The 

problem is compounded when there are multiple sources which need to transmit data. 

We deal with the problem in which the network has to be robust against edge failures. 
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      Consider a scenario where there are multiple camera feeds which need to be 

transmitted to a subset of the audience in a room, where the member belonging to the 

subset need to receive all video feeds. Here there are a small number of sources and a 

large number of destinations and nodes. The nodal degree of the network graph of the 

audience would be reasonably large, enabling us to find lot of disjoint paths to any 

given person in the audience. The data carried across some of these paths will be the 

actual data whereas across some will be redundant data introduced into the network 

to achieve fault tolerance.  

      This introduction of data is possible through erasure coding which was discussed 

before. We encode the original data and send parts of it through n paths such that 

data from k paths is enough to recover the original data. This allows us the liberty of 

being able to support the breakdown of n-k paths. Since feeds are coming in from 

multiple sources we need to reduce the amount of overhead or redundant information 

being sent on the network to be able to utilize the bandwidth effectively.  Through the 

use of network coding we combine the data of all the sources which are being sent on 

those n-k paths to save on the data overhead. 

   

1.3   Network Coding 

     Network coding is a technique for efficient utilization of bandwidth. The idea here 

is to combine instead of repeat. In any give multicast network with multi source input, 

there will be several links which will be carrying data from different sources to 

multiple destination nodes. In normal transmission if a router has to send say two 

such multicast packets over a link it would take two time units. With network coding  
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it is possible to send both data units in a single unit of time. This is demonstrated via 

a simple butterfly network shown below.  

 

 

 

  

 

 

 

  

 

 

(a)                  (b) 

Figure 1.1  Two Source, Two destination Graph  a)Without Network Coding     b)With      

               Network Coding 

       Consider a scheme with two sources 1 and 2 and two destinations 5 and 6.Let a 

be the data packet of Source 1 and b be the data packet of Source 2.Each of the 

destinations needs data from either of the sources. The network graph is shown above. 

In Figure 1.1 (a), the node 3 needs two time units to send a and b to node 4 since 

there is a single link between 3 and 4. But as we see in Figure 1.1 (b), if we XOR a 

and b and send it over the link connecting node 3 and node 4, we will still be able to 

recover b at node 5 and a at node 6. This is possible because, if we XOR a which 

node 5 receives from node 1 with a⊕ b, we obtain b (similarly we can obtain a at node 

6). In practical network coding, instead of XORing which is addition in the field F2, 

we use operations over a field of higher order. 

a 

6 5 

b    a 
4 

a 

b 

3 

2 1 

b 

a b 

(a⊕b) (a⊕b) 

a 

6 5 

4 

(a⊕b) 

3 

2 1 

b 

a b 



www.manaraa.com

 

5 

 

1.4  Existing Protection Schemes 

     There have been several approaches for providing fault tolerance to multicast 

networks. Some of the primitive techniques of protection involved providing backup 

path to every link or possible primary path in the network.  In the Dual-tree 

protection scheme [3], instead of protecting each link or member individually in the 

multicast tree, a secondary tree is built amongst a subset of the multicast members. 

This scheme requires the underlying topology to be a bi-connected graph, with the 

constraint that there are at least two vertex disjoint or link disjoint paths between any 

two nodes. It can also be noted that unlike the link and path protection approaches, 

dual-tree scheme does not require per-link or per-path fault-tolerance management.    

    Aggregated MPLS-based Fault Tolerant Multicast [4] is based on the concept of 

aggregated multicast. The idea here is to have one multicast tree support more than 

one multicast groups, making it a many-one mapped tree. The advantage is that 

routers will have to maintain states of fewer multicast trees. It is easier for them to 

lookup for backup paths and the number of table entries would be fewer.  

    The Modified Threshold Sharing Scheme [2] provides protection through data 

redundancy. Data shares are sent on n disjoint paths and only k of them are enough to 

recover data at the receiver. It employs Shamir’s key sharing algorithm (or the concept 

of erasure coding) to generate such shares. This method is the basis for the proposed 

approach. It is discussed in detail in the next session.   

     Network coding is being widely used for effectively utilizing bandwidth. It is also 

increasingly being employed to provide protection against faults. With prior knowledge 

of edge failure patterns, network codes can be constructed guaranteeing a certain 
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throughput in spite of breakdowns. The authors in [5] established the algebraic 

framework for linear network coding and also discussed recovery based on knowing 

edge failure patterns beforehand. Polynomial time construction of network codes that 

could handle such failures was discussed in [6]. In [7], an information theoretic 

framework to discuss network management in the presence of edge failures was 

presented. Authors in [8] employed network coding to protect against node failures. 

    While network coding for a single source multicast session has been researched a 

lot, results on multi source multicast sessions have not been that forthcoming. 

Pollution, where certain sinks receive data that is redundant from a decoding 

perspective has been a primary concern. The author in [9] proposed a constructive 

scheme that provided achievability theorems for multi-source multicast sessions. 

Authors in [10] partition the graph into sub graphs and transform the multi-source 

problem into a combinatorial optimization problem. 

 

1.5   Erasure Coding Based Protection 

1.5.1 Scheme 

      This approach [2] for fault tolerance is based on Adi Shamir‘s Threshold Sharing 

Scheme (TSS) in security. The scheme uses a modified version of TSS. The idea here 

is to divide the original message into say n different shares and route these on n 

disjoint multicast trees. These n shares are such that only k of them are required to 

recover the original message. Hence even if there are (n-k) failures the message can 

still be recovered at the destination. The scheme is called a (k,n) threshold sharing 

scheme. For example if the threshold scheme which is being used is (3,5), then out of 

the 5(n) packets which leave the node, the receiver needs to receive only 3(k) of them 



www.manaraa.com

 

7 

to be able to recover the message. The recovery happens through the Lagrange 

interpolation method. The scheme above can support the loss of at most two (2) of 

the packets owing to link failures in two multicast trees. Since our proposed approach 

works on the same principle and is an extension of this scheme, understanding this 

scheme an example would be helpful to illustrate the concepts. 

 

1.5.2  Modified TSS Example 

      The scheme which will be used in this example is a (3,5) threshold sharing 

scheme., i.e.,k =3, n=5,where   

k - Number of paths which have to be intact in order to support message recovery                    

n - Total number of paths. 

Let us divide the original Data packet into m blocks or shares ( S0 ,S1…. Sm), where  

m-  (Total packet size in bytes/L) and   

L  - size of each block and is defined as 

L = h*k, where h can be any integer, 

We have chosen h =1.Hence L=3 and the size of the block becomes 3. 

 

1.5.3   Message Distribution Process 

      In the message distribution process the generator functions encode the original set 

of 3 packets into a total of 5 packets as shown. This is then transmitted on the 

network. If any of the receivers receive fewer than 5 packets (greater than 3 packets) 

due to failure of edges in the network, the original packet will still be decodable.  
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         47 46 41 08 03 01 

 

  

 

 

 

 

 

 

 

Figure  1.2   Distributing the Original Data Packet 

 

     If p is a prime number a polynomial of degree k-1 in x over Zp is defined as 

f(x) = (bk-1xk-1+…….b2x2+b1x+b0) mod p 

     The bi’s are chosen from the original data packet as shown in Figure 1.2. The 

message distributor generates f(x) for values of x over the field Zp. Figure 1.2 shows 

the selection of bi’s and Figure 1.3 shows the generator functions. The various f(x) 

values are then sent on the disjoint trees. 

     The decoding at the receiving end is accomplished using the Lagrange 

interpolation method. 

 

 

Message distribution process 

 

 b2      b1   b0 

S1 S0 S m 
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g(Sm,x) = (b2 ) x2 +(b1 ) x1+(b0 )  mod p 

.                 …        …          …      

.                 …        …          …                                  generator functions 

g(S1,x) = (47 ) x2 +(46 ) x1+(41 )  mod p 

g(S0,x) = (08 ) x2 +(03 ) x1+(01 )  mod p 

 

g(Sm, x= x5 ) g(Sm, x= x4 ) g(Sm, x= x3 ) g(Sm, x= x2 ) g(Sm, x= x1 ) 

       …       …        …       …       … 

       …       …        …       …       … 

g(S1, x= x5 ) g(S1, x= x4 ) g(S1, x= x3 ) g(S1, x= x2 ) g(S1, x= x1 ) 

g(S0, x= x5 ) g(S0, x= x4 ) g(S0, x= x3 ) g(S0, x= x2 ) g(S0, x= x1 ) 

 

 

 

 

                         

 

         

 

 

 

Figure 1.3 Message Distribution Process  
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1.5.4   Advantages and Disadvantages 

      This scheme has several advantages. It can support multiple link failures very 

easily. The algorithm can support different levels of resilience based on users’ 

requirements. Fault tolerance is present by default and there is no router state update 

required in order to recover from link failures. Hence there is almost zero delay in 

recovering from link failures. There is no backup tree computations as they can be 

combined as part of the n disjoint multicast trees required to route the n packets.  

      The disadvantages of this method are that the algorithm imposes greater 

connectivity requirement on the network owing to the n disjoint trees which are 

required to route the multicast packets. Also, additional bandwidth is required since 

the amount of information sent per packet is greater than the original size of the 

packet, and is a factor of the number of link failures which need to be supported. This 

bandwidth will increase when there are multiple sources that need to be supported. 

Our algorithm tries to address this problem by provisioning trees belonging to multiple 

sessions on the same tree and using network coding to encode the data. 

 

1.6  Thesis Contributions 

The work in this thesis tries to address the problem of reducing the resources 

utilized by the erasure coding method. We consider a network where the erasure 

coding scheme is employed by many sources. Every source requires at least n disjoint 

paths to all the destinations. These paths to multiple destinations form a multicast 

tree. Erasure coding alone would have necessitated all n of these paths of every source 

to be disjoint. Using network coding we are able to remove this constraint. There 

would still be k disjoint paths, but n-k (the number of paths the breakdown of which 
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can be supported) paths used for protection can be combined so as to reduce the 

overall overhead. The thesis discusses the problem and the set of flow constraints that 

need to be satisfied by the participating sources. The algorithm also tries to provide 

the required resilience at the cost of decreased throughput if certain sources are not 

able to meet the demands of path disjointedness and the flow requirements. We show 

that our scheme outperforms the erasure method based protection in terms of resource 

utilization while providing almost the same protection.  

  

1.7  Thesis Organization 

The thesis is organized as follows: In the Problem Formulation section we discuss 

the fault tolerance problem, the flow constraints that need to be satisfied by the 

various participating nodes in the network. The proofs for the sufficiency of these 

conditions are also discussed. The next section discusses the algorithms to find out if 

the nodes meet the required constraints. If they do not meet the same, a scheme to 

selectively discard nodes based on their ability to compromise throughput for resilience 

is formulated. This is followed by the algorithm to check the condition for shared 

trees. On meeting all these constraints actual multicast trees are established which 

determine the cost savings. 

      The coding coefficients for the network coding scheme are discussed next. This 

involves the field size discussion and the scheme itself based on Vandermonde matrix 

.The sufficiency of the scheme for receiver decoding is also established.  

      The simulation results demonstrate the performance of our method against 

erasure coding based scheme. It shows the savings in terms of cost of provisioning this 

protection. A comparison of both the schemes for various values of k and n is also 
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demonstrated via graphs. The thesis concludes with further improvement and future 

research work that can be performed. 
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CHAPTER 2.   PROBLEM FORMULATION 

2.1 Introduction 

      This section explains the problem and its formulation in detail. It specifically 

discusses the various constraints which need to be satisfied by the nodes in order for 

them to be a part of the algorithm. It also proves that these constraints are necessary 

and sufficient in order to ensure that the algorithm will work.  

 

2.2 Multiple Source Multicast Session Protection 

2.2.1 Network Model and Symbols 

      This section details the network graph and how it is modeled and symbols for 

different problem parameters. 

Symbol         Definition 

N            Total number of nodes in the graph 

s          Total number of sources  

r           Total number of sinks 

Si          The ith source node 

S              Set of all the sources 

t         Used to denote a sink 

T         Collection of all the sinks 

Tj       The jth source node 

n          The total number of shares   

k            The number of shares  required to decode the data  

q          Total number of shared graphs (n-k) 

fin(x)         The flow incoming to node x 

fout(x)        The flow outgoing from node x 

fmax(x,y)     The maximum flow from node x to node y 

frm(Si,T)    Multicast flow(rate) from Si  to each of the destinations in T. 

Table 2.1   Network Symbols 1 
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     The network is modeled as an undirected graph G (V, E) with V as the set of 

nodes and E as the set of undirected edges. The edges are assumed to be of unit 

capacity. All the sources transmit data to every destination. The various symbols 

which are used is this section are mentioned above in the table 

      The erasure coding scheme which would be used will be represented as (k,n).This 

tolerates breakdown of n-k paths without of loss of data. For sources that cannot 

satisfy the requirement of n paths (k disjoint and n-k shared paths), there are several 

approaches that can be taken. 

1) Throughput only compromise: This approach involves compromising the 

throughput (k) in order to provide the guaranteed protection (n-k). Every 

source will specify a kth which is the minimum threshold of throughput required 

by the particular source. We reduce k till we reach the threshold.  (n also 

reduces keeping n-k constant). This approach is generally used when the source 

cannot meet the requirement of k disjoint paths. 

2) Protection only compromise: This approach involves compromising protection 

(n-k) without reducing the throughput (k). This can be accomplished by 

reducing n (and keeping k constant) which decreases the number of shared trees 

(n-k) of which the source is a part.  

3) Throughput and Protection compromise: A combination of both approaches 

mentioned before is possible. We first reduce the throughput (k) as long as it 

remains above the kth
 (n also reduces keeping n-k constant). If this does not 

yield us enough disjoint and shared paths then we reduce n (keeping k 

constant) to reduce protection (n-k). A reduced protection is provided if the 

source cannot meet the constraints in spite of reducing throughput. 
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2.2.2  Problem Definition and Solution Approach 

     The multiple source multicast fault tolerance problem can be formally defined as 

follows:       

Problem Definition: Given the network G (V, E) consisting of N nodes with s sources 

and r receivers, every receiver requiring data from every source, provision a set of n 

multicast session connection paths between every source and all the receivers such that 

a)  Every receiver receives at least k shares on k disjoint paths, 

b) The breakdown occurs for at most n-k paths between any source and receiver at 

any point of time 

c)  Minimum cost is required for provisioning sessions 

d) Maximum number of sources are supported in the event of network being unable to 

support all, at reduced throughput (exceeding kth ) and/if necessary protection. 

     The solution approach discussed in this thesis can be briefly described as follows 

1) The first step in the scheme is checking for all the sources and destinations to 

see if they meet the necessary and sufficient flow constraints.  

2) If sources meet all the conditions then actual multicast trees (both disjoint and 

shared) are calculated. A graph example has been discussed below for better 

understanding. 

3) If they do not, then the throughput and protection compromise approach is 

followed. Sources that do not meet these constraints will be discarded. 

4) The generator functions along with the prime number and field size for them is 

decided amongst the sources and the receivers. 

5) The coefficients for the network coding are agreed to between the sources and 

receivers and encoded in the metadata of the packets. 
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2.2.3 Multicast Protection Example 

      An example network is shown in Figure 2.1 (a) and consists of 21(N) nodes. There 

are three sources (s=3) A, B and C and two destinations (r=2) T, U. n is 4 and k is 

2. Hence two disjoint trees for each of the sources are shown in Figure 2.2 (b).The two 

shared trees are shown in Figure 2.3 (c). For the shared tree represented by the 

following edges {A-F, B-F, C-F, N-F, N-T, N-U}, the erasure coded packets from 

the sources A, B and C will be network coded at the node F. For the shared tree {A-

I, B-I, I-Q, C-Q, Q-T, Q-U}, erasure coded packets from A and B are combined at 

node I which is then combined with the packet from node C at node Q. 
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(c) 

Figure 2.1 a) Network graph with N=21 b) Disjoint trees for sources A, B and C 

respectively c) Shared trees for nodes A, B and C 
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2.3 Flow Constraints 

2.3.1 Theorems and Proofs for Necessary Conditions  

      The below theorems and their subsequent proofs are necessary and need to be 

satisfied by the nodes to be able to be a part of the scheme.  

Theorem 1.  fin(t) ≥   k *s + (n-k) ∀t ∈T 

Proof. We need k disjoint trees between every source and destination in addition to n-

k trees which can be shared with other sources. Since an incoming edge to a 

destination from any tree corresponds to a flow of one (every edge capacity is one), 

therefore every destination will need an incoming flow of at least k*s for the s sources 

(Since the trees from all the sources have to be disjoint simultaneously). Additionally 

there is a shared flow of n-k which will come from all the sources put together. So the 

total incoming flow to the any destination should at least be k *s + (n-k).  

 

Theorem 2. fout(Si) ≥   n ∀Si ∈S 

Proof. Since for any given source n packets have to be sent on n different trees, we 

need an outgoing flow of at least n from each source (since one outgoing tree 

corresponds to an outgoing flow of one). 

 

Theorem 3. fmax (Si, t) ≥  n,	∀Si ∈S and t ∈T  

Proof: Similar to the above reasoning since there needs to be n packets sent from any 

source to any destination on n disjoint paths, and since edge capacity is one, a 

minimum flow of n is required between any source and any destination. 
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2.3.2  Theorems and Proofs for Necessary and Sufficient Conditions 

      These conditions are necessary and sufficient for the required disjointedness and 

flow in the graph. The first set of conditions is for the disjoint multicast trees. The 

second set of conditions is for the trees shared across different multicast sessions. 

      The multicast flow through one multicast tree is defined as sum of the flows 

received by all the destinations .So if there are r destinations in the multicast tree, the 

multicast flow(assuming a flow of one is received by each destination from the source) 

is defined as r. 

All receivers need to receive equal flow. 

frm(Si,T) – Multicast flow(rate) from Si  to each of the destinations in T.  

a) Disjoint trees 

Theorem 4. 

frm(S1,T) ≥   r* k 

frm(S2,T) ≥   r* k 

. 

. 

frm (Ss,T) ≥   r* k 

 

Proof: Theorem 4 is for the case of disjoint trees. According to the problem 

statement we need at least k disjoint multicast trees from any source to all the 

destinations So a k disjoint tree requirement from source to all the destinations implies 

a minimum multicast flow of r*k.. (There will be k disjoint trees from the source to 

the r destinations). Since the k disjoint trees of any given source are distinct from the 

k disjoint trees of any other source, all the conditions of Theorem 4 have to hold true 
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simultaneously. Hence there has to be a multicast flow of at least r*k from every 

source to all its destinations. 

      Alternatively, if all the conditions of Theorem 4 are true, it implies that there is 

a flow of r*k from every source to its multicast destination at the same time. Because 

of the unit capacity edge condition, these r*k flows for every source are disjoint from 

the others. Since a multicast flow by definition means that every destination has to 

receive an equal amount of flow, the previous statement implies that there is a flow of 

k from any given source to any destination, i.e k disjoint paths. In essence, there are k 

disjoint trees between every source – every destination.  

   

b) Shared graphs 

Theorem 5. 

β1 frm(S1,T) + β2 frm(S2,T) +…….  + βs frm(Ss ,T) ≥ (n-k)*r      

where (β1, β2….. βs) (s-tuple) is set of all binary vectors  : (β1, β2….. βs)10 = 2y,0≤ y≤ s-1 

  

Proof: Theorem 5 is for the case of shared trees. The goal is to ensure that every 

destination gets at least n-k copies from every source. These copies are network coded 

- The data from various sources are combined and sent. These n-k copies will result in 

n-k equations with s unknowns (for s sources) in the extreme case where all source 

data is combined into one single copy for every shared tree.  

      To ensure that n-k multicast copies of every source reach every destination, we 

need at least n-k disjoint ways of reaching every destination. i.e n-k multicast trees 

between any source and the corresponding destinations. In Theorem 5 the condition 

has to hold for any value of the binary vector. That translates to every source needing 

to have a multicast flow of at least  (n-k)*r to the various destinations. Note that 
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Theorem 4 and 5 have to be valid simultaneously in the network. An alternate way 

of stating is that Theorem 5 has to hold in the graph obtained by removing the 

edges contributing to the validity of Theorem 4.   

      Here trees across sources can have common edges because on those edges we can 

send data in a network coded fashion. So essentially, the network graph left after 

removing the edges which are a part of the flows in Theorem 4 should have at least 

n-k disjoint paths from any source to any destination. When considering all the 

sources simultaneously edges which are common can send network coded data, 

whereas edges that are exclusive to trees can carry the original data as is.  

      If Theorem 5 is satisfied for every possible binary vector it implies that there is 

a flow of at least r*(n-k) from every source to all the destinations in the network 

obtained by removing edges involved in supplying the required flow in  Theorem 4. 

Since this is a multicast flow for r destinations it implies that every destination 

receives a flow of n-k. That is there are n-k different paths to reach a destination from 

any given source. Hence n-k different network coded copies of the original data can be 

obtained by any destination. 

 

2.3.3  Flow Constraint Example 

     The theorems stated above can be explained using the network graph in Figure 2.1 

(a). The total number of nodes N = 21. The number of sources is 3 (s=3). There are 

two destinations (r=2). The requirement for the total paths and total disjoint paths is 

4 (n) and 2 (k) respectively. 

The source nodes are A, B and C and the destinations are T and U. 
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1) Theorem 1: fin(t) ≥   k *s + (n-k) ∀t ∈T 

The incoming flows to node T and U are 8 each, 

L.H.S: fin(T) = 8, fin(U) = 8, 

R.H.S: k*s+ n-k = 8, 

Hence Theorem 1 holds good 

 

2) Theorem 2:  fout(Si) ≥   n ∀Si ∈S 

The outgoing flows from nodes A, B and C are 4 each. 

L.H.S fout(A)= 4 , fout(B)= 4, fout(C)= 4, 

R.H.S: n=4 

Hence Theorem 2 holds good 

 

3) Theorem 3:  fmax (Si, t) ≥ n,	∀Si ∈S and t ∈T  

From the Figure 2.1 (a), the max flows from A, B and C to T and U are equal to 4, 

L.H.S: fmax (A, T) = 4, fmax (A, U) = 4, fmax (B, T) = 4, fmax (B, U) = 4,  

        fmax (C, T) = 4, fmax (C, U) = 4 

R.H.S:n = 4 

Hence Theorem 3 is valid 

 

 4) Theorem 4: 

frm(S1,T) ≥   r* k 

frm(S2,T) ≥   r* k 

. 

. 
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frm (Ss,T) ≥   r* k 

L.H.S: r*k = 4, 

Hence we need a multicast flow of at least 4 on the L.H.S.  

In the network of Figure 2.1 (a) nodes A, B and C each have a multicast flow of 8. 

Since the Theorem 4 implies that every source needs to have a multicast flow of 4 that 

is edge disjoint from the others we consider Figure 2.1 (b). It shows two trees ({A-D, 

D-L, D-M, M-U, L-T} and {A-E, E-O, O-T, T-U}) for node A ,two trees for B 

({B-G, G-T, G-U} and {B-H, H-P, P-T, P-U}) and two trees for C ({C-J, J-R, 

R-T, R-U} and {C-K, K-S, S-T, S-U}) which are edge disjoint from each other 

and contribute to a multicast flow of 4 for each node. 

Since every tree of node A, B and C is disjoint from each other, all the equations in 

Theorem 4 are valid. 

 

5) Theorem 5: 

β1 frm(S1,T) + β2 frm(S2,T) +…….  + βs frm(Ss ,T) ≥ (n-k)*r      

where (β1, β2….. βs) (s-tuple) is set of all binary vectors  : (β1, β2….. βs)10 = 2y,0≤ y≤ s-1 

R.H.S: (n-k)*r = 4   

We have T = {T, U} and β1 frm(A,T) + β2 frm(B,T) + β3 frm(C,T)  on the L.H.S. 

s = 3, Hence the possible binary vectors such that (β1, β2, β3)10 = 2y are (0,0,1), (0,1,0) 

and (1,0,0).The three equations which need to be satisfied therefore are 

frm(A,T) ≥ 4 

frm(B,T) ≥ 4 

frm(C,T) ≥ 4 
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Note that at a time the binary vector can take only one value and hence the three 

flows need not be disjoint from each other. They still need to be disjoint from the 

flows used in Theorem 4. From Figure 2.1 (c), we have 2 multicast trees ({A-F, B-F, 

C-F, F-N, N-T, N-U} and {A-I, B-I, I-O, C-O, O-T, O-U}). For node A the 

first tree provides a multicast flow of 2 through {A-F, F-N, N-T, N-U} and the 

second tree provides a multicast flow of 2 through {A-I, I-O, O-T, O-U}. Hence A 

has a multicast flow of 4. Similarly it can be seen that nodes B and C too have a 

multicast flow of 4 from the two multicast trees. The edges of these trees being 

disjoint from the trees in Figure 2.1 (b), Theorem 4 and Theorem 5 hold 

simultaneously. 

     In the above example the shared trees in Figure 2.1 (c) network coding  would 

happen on nodes F, I and O.  

.  

2.4  Summary 

      In this chapter we discussed the network graph and the problem formulation. 

Some of the details of the scheme mentioned will be discussed in the next section. We 

also saw a graph example and how the disjoint and shared paths were formed. 
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CHAPTER 3.   MULTICAST TREE PROTECTION ALGORITHM 

3.1  Introduction 

      In this chapter we discuss the algorithm for verifying the flow constraints 

discussed before. This includes the selection of destination nodes and source nodes that 

can take part in the scheme. This is followed by the algorithm to build actual 

multicast trees for the disjoint and shared trees.  

 

3.2 Network Symbols and Algorithm Overview 

     The below table lists and defines all the symbols and terms used in this chapter. 

Symbols already defined in earlier chapters will also be used. 

 

 Symbol  Definition 

Si               The ith source node 

S`                 Collection of all the sources 

tj              Used to denote a sink 

T`              Collection of all the sinks 

Ux   Set containing sources with a protection of n-k-x  

Ngr
x   Total number of paths for the sources in the xth group 

Kgr
x    Total number of disjoint paths for the sources in the xth group 

g      Total number of groups 

Uji  The ith source of the jth group in U 

ftemp  Multicast flow variable 

Kth
i  Threshold value of number of disjoint paths(or throughput) for a source i 

n i    Number of total paths for a source i 

k i     Number of disjoint paths for a source i 

fij             Flow path between source i and destination j 

f kij               Denotes the kth flow path between source i and destination j 

mi
j                  Max flows to destination j from source i 

F k1 k2….. kr
         Combination of various flow paths 
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O(F)            Ordered arrangement of flow combinations 

MF          Multicast flow value 

P(F k1 k2….. kr)     No of paths  (f kij ) with which F k1 k2….. kr shares common edges. 

C(F k1 k2….. kr)     Measures percentage of throughput savings for flow combination                   

                    F k1 k2….. kr  

Fji        The ith source of the jth group in F 

Fx   Contains sources in the xth group  

ki 
old  Number of disjoint paths for a source i before running algo 3.3.2c) 

fb tr   Used to represent a tree formed by a collection of flows 

 

Table 3.1  Network Symbols 2 

 

Algorithm Overview 

The flow verification step consists of algorithms that check whether Theorem 1-5 hold 

in the network or not.  

1) Destination Selection: Checks whether the destination has enough incoming flow to 

handle connections from all the sources (Theorem 1). 

2) Source Selection 1: This checks whether the source has enough outgoing flow to the 

destinations in order to support n paths. (Theorems 2 and 3) 

3) Source Selection 2 and Grouping: Checks if the sources can satisfy theorems 4 and 5  

i.e., whether they have enough disjoint and shared trees to support the proposed 

approach. Grouping is the process of segregating sources based on the amount of 

compromise in throughput and protection they require. (Theorems 4 and 5). 

 

3.3 Destination Selection 

      The destination nodes that can satisfy the constraints discussed in Theorem 1 are 

selected in this algorithm. Since the destinations should be able to support k disjoint 

paths coming each of the sources (s), they need a minimum input flow of k*s to 
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accommodate the same. The shared trees would contribute in the worst case n-k 

incoming edges at least. Essentially the destination needs to have a minimum of k *s 

+ (n-k) as the incoming flow. The destination selection step checks if the destined 

nodes can support this flow, and retains or discards destination nodes based on this. 

The algorithm is described below. 

Algorithm 3.1 (A-3.1)      

Algorithm    Destination Selection 

This algorithm filters out the destination nodes that cannot meet the    

inflow constraints. 

Input          Network Graph G 

                 Destination Set T 

Output        New Destination Set T`  

 

1   T ` = ∅ 

2   foreach j← 1 to r do 

3        if ( fin(Tj) ≥   k *s + (n-k)) ,Tj∈T 

4            T `← T `∪ tj 

5        endif 

6   endfor 

 

3.4 Source Selection and Grouping 

     The sources in the network need to satisfy Theorems 2, 3, 4 and 5 to be able to 

participate in the propose approach. Specifically we need to verify whether the sources 

have enough flow to the destinations and enough outgoing edges to support the flow. 

The process of verification is divided into two steps. Source Selection 1 checks for the 

outgoing flow condition and max flow condition mentioned in Theorems 2 and 3. 
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Source Selection 2 and Grouping verify whether there are enough multicast flow to 

satisfy conditions in Theorems 4 and 5. 

.  

3.4.1 Source Selection 1 

      The first step, Source Selection 1, determines if the sources have the minimum 

number of outgoing edges and the minimum flow required to take part in the scheme 

.Since there are n paths originating from every source, the minimum outflow required 

is n. Also since there will be at least n multicast paths from any source to any 

destination, there has to be a minimum flow of n between any source and destination. 

If either of these conditions are not met, the source will be discarded. 

Algorithm 3.2 (A-3.2)      

Algorithm   Source Selection 1 

          This algorithm filters out the source nodes that cannot meet the      

          outflow constraints as well those that do not have substantial flow  

          to the destination nodes. 

Input          Network Graph G 

                 Destination Set T 

                 Source Set S 

Output       New Source Set S` 

  

1   S` = ∅ 

2   foreach i← 1 to s do 

3        if ( fout(Si) ≥  n ), Si∈S 

4           if ( fmax(Si ,t) ≥  n ,	∀t ∈T `)        

5                 S `← S `∪ Si 

6            endif 
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7        endif 

8     endfor 

 

 

3.4.2 Source Selection 2 and Grouping 

      This stage involves second level of source filtering along with their segregation 

into groups. The order of sources is based on increasing average max flow to all the 

destinations. This ensures that sources which have lesser resources get priority for 

calculation of trees as the algorithm inherently favors sources whose constraints are 

verified first. The sources which have a higher max flow have more flexibility for 

choosing their paths. In this stage, sources undergo three steps. 

a) Evaluation of multicast flow constraint for disjoint trees 

b) Grouping based on the amount of protection offered (n-k) 

c) Evaluation of multicast flow constraints for the shared trees 

Before we discuss these steps in detail, we refer the reader to Table 3.1 which gives a 

list of all the symbols that will be used in this section. 

 

      3.4.2.1 Evaluation of multicast flow constraint for disjoint trees 

      Every session requires k disjoint multicast trees from the source to the various 

destinations. Additionally since the scheme supports breakdown of up to n-k paths 

from any source at any given time, these k paths have to be disjoint from the 

multicast trees of any other session. Hence it is imperative to prune the network of 

edges; belonging to the current session, before proceeding to the next (Line 4, A-3.3). 

Determination of multicast flow is accomplished using a heuristic method described in 

the form of an algorithm. From the definition of multicast flow every session needs to 
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have a multicast flow value of at least k*r, where r is the number of destinations (Line 

3, A-3.3).  

      Multicast Flow Calculation. This algorithm is used to calculate multicast 

flow using a heuristic approach. It consists of three steps 

1) Generation of flow combination Set 

Calculate flow paths from a given source to various destinations. Generate all possible 

combinations of flow paths by taking only one flow each from every destination’s flow 

path set. 

2) Rearranging the set based on throughput savings 

Rearrange the flow combination set based on the assumption that the best flow 

combination is the one which has the least percentage of edges common with any 

other flow combination, 

3) Finding the multicast flow value 

Every flow combination contributes to a multicast flow, a value equal to r. Find if the 

source has enough multicast flow  

       

    3.4.2.2 Source Grouping based on the amount of protection offered (n-k) 

      Sources are divided into groups (U), based on the amount of protection they can 

afford. The Uj
th group offers a protection of n-k-j (Line 25 - 30, A-3.3). Sources which 

can meet the constraint of MF = k*r are grouped into the default set U0 (Line 5, A-

3.3). As mentioned before, protection at reduced cost is made available to sources that 

cannot meet the previous constraint (Line 7 - 10, A-3.3). The throughput k is reduced 

for such sources to maintain n-k constant, provided it stays above kth
i which is the 

minimum throughput threshold for the ith source (Line 8 - 14, A-3.3). If this step helps 
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maintain the same protection level the source goes into the U0 group. Otherwise, it is 

segregated into the Uj
th group (where j is as low as possible) depending on the amount 

of protection it can afford. (Line 15 - 20, A-3.3). 

 

Algorithm 3.3 (A-3.3)       

Algorithm Disjoint Tree Source Filtering  

This algorithm groups sources based on the amount of protection they 

offer. Sources unable to meet the constraints are accommodated by 

reducing throughput. If they still cannot satisfy the conditions a reduced 

protection is offered to the source. Sources that cannot meet even the last 

constraint get discarded. 

Input        Network Graph G 

               Destination Set T 

               Source Set S` 

Output     Source Group set U 

                  Network Graph G` 

 

1   G`  ← G 

2   foreach i← 1 to s` do 

3        if  ∃	frm(Si ,T`) > r* k  , Si ∈S`in the graph G`, 

4            G` ← G`– {E(frm(Si ,T`)) }: frm(Si ,T`)= r* k   

5            U0 ←U0	∪ Si              

6        else   

7            ftemp ← frm(Si ,T`)/r 

8           if (ftemp >Kth
i )                   

9                 n i ← ftemp 

10              k i	← ftemp - min((ftemp-Kth
i),(n-k))  

11           else 

12                S`← S`- { Si }             
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13                continue      

14           endif 

15           flag ←0 

16           foreach j	← 1 to g  do 

17               if (ni - k i	)= (Ngr
j– Kgr

j ) 

18       Uj←Uj∪ Si 

19       Set flag←1    

20               break   

21               endif             

22           end for 

23          frm(Si ,T`) ←	r* k i 

24          G` ← G`– {E(frm(Si ,T`)) } 

25           if flag =0 

26          g ← g + 1 

27          Ngr
g ← ni 

28               Kgr
g ← ki 

29               Ug← ∅ 

30               Ug←Ug∪ Si              

31           endif   

32      endif  

33  end for 

 

 

Algorithm 3.4 (A-3.4)       

Algorithm   Multicast Flow Calculation  

   This algorithm is used to calculate multicast flow using a heuristic   

   approach. It consists of three steps 

         1) Generation of flow combination Set 

              2) Rearranging the set based on throughput savings 

                3) Finding the multicast flow value 

Input          Network Graph G 
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                 Destination Set T 

                 Source Si  

Output       MF 

1)  

1   Gtmp← G 

2   foreach x	← 1 to r  do 

3        m←0 

4        while (∃f(Si ,tx)>0) 

5       Find f(Si ,tx)=1 :E(f(Si ,tx))∈ Gtmp 

6           Gtmp← Gtmp- E(f(Si ,tx)) 

7           m ← m+1 

8            fmijx← f(Si ,tx)      

9        end while    

10      Gtmp← G 

11      mx←m 

12  end for 

 

Calculate 

13    a) F k1 k2….. kr ←f k1ij1 ∪ f k2ij2 ….. ∪	f krijr : 0< k1 ≤ m1, 0< k2 ≤ m2…0< kr ≤ mr, i	∈ S, 

14                                                  ja∈ T, 0<a≤r 

15    b) O(F) ←{ F 11…1, F 11…2……… F m1m2…. mr }  

16    c)  P(F k1 k2….. kr) ∀ k1,k2…… kr,0< k1 ≤ m1, 0< k2 ≤ m2…0< kr ≤ mr 

17    d) C(F k1 k2….. kr) ← 1  -     E(f k1ij1U f k2ij2Uf krijr)  

18                                 E(f k1ij1)+ E(f k2ij2)+ E(f krijr) 

 

2) Rearrange the set O(F)  : 

19     If Fa, Fb ∈	O(F) : a<b then P(Fa) ≤ P(Fb) and  

20                                              if P(Fa) = P(Fb) then C(Fa) ≤C(Fb) 

 

3) Finding the multicast flow value  

21   MF ←0, i ←0 

22    while( |O(F)| ≠ 0) 

23       Fi ← Oi(F)  
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24      	If Fb∩ Fi  ≠ 	∅ ,	∀ Fb ∈	O(F), then 

25           O(F)	← O(F) – {Fb} 

26       endif 

27           MF ← MF +1 

28       i ←i +1 

29    end while 

     

 3.4.2.3 Evaluation of flow constraints for the shared trees 

      We need to find enough flow for the existence of n-k shared trees (Line 5, A-3.5). 

So we take every source (i) and find if it has at least r* (ni-ki) multicast flow. The way 

partitioning is done is such that a source belonging to the Uj
th group will be part of 

exactly n-k-j shared trees.  Sources belonging to the jth group which do not have at 

least r*(Ngr
j-Kgr

j) multicast flow go through the following steps:  

1) Some of their k trees are shifted to the shared set (provided they are still over the 

kth  limit, Line 8-13, A-3.5).  

2) If the source does not have enough trees then we try to reduce n-k for the source 

and shift it to a different group (compromising throughput for protection, (Line 13-

30), A-3.5). 

3) If the source does not have trees and reducing n-k reduces the throughput below kth  

threshold, then we discard the source (Line 32-33, A-3.5). 

The algorithm for this step is described in ‘Shared Tree Constraint based Source 

filtering’ 

 

Algorithm 3.5 (A-3.5) 

 

Algorithm   Shared Tree Constraint based Source filtering  
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   This algorithm is used to calculate if the sources which have been    

   segregated into groups have enough flow left to be able to support  

   shared trees 

Input          Network Graph G` 

                  Destination Set T` 

               Source group set U 

Output        Refined Source group set U 

1   foreach j← 1 to g do 

2       i← 0  

3       Fj ← Uj 

4       while Fj≠ ∅ do 

5             if  	∃	frm(Fji , T`)≥ r *(ni - k i), in the graph G`, 

6                  Fj ← Fj - Fji 

7             else 

8                 ni   	← ki+ (frm(Fji , T`)/r) 

9                 ki 
old

 ← ki   

10                ki    	← max((ni-(Ngr
j – Kgr

j)), Kth
i) 

11                Fj				← Fj - Fji 

12   Uj    ←	Uj - Fji 

13               if (ni - ki > 0) 

14                    flag ←0 

15                    foreach d	← 1 to g  do 

16                         if(ni - k i	)= (Nd – Kd ) 

17                             Ud ←Ud	∪ Fji 

18                             Set flag←1   

19                             break   

20                         endif             

21                    endfor 

22                    frm(Fji ,T`) ←	r* (ki 
old -k i) 

23                  G` ← G`+ {E(frm(Fji, T`)) } 

24              if flag =0 

25                  g ← g + 1 
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26                  Ngr
g ← ni 

27                         Kg
g ← ki 

28                   Ug ← ∅ 

29                  Ug ←Ug	∪ Fji             

30                    endif   

31   else 

32             frm(Fji,T`) ←	r* ki 
old 

33                  G`← G`+ {E(frm(Fji , T`)) } 

34                endif 

35               i←i+1 

36          endif  

37       endwhile 

38  endfor 

    

 

3.5 Steiner Tree approach for Multicast tree generation 

    Connections have to be provisioned on the disjoint and shared path sessions once 

the feasibility of the scheme is verified. This is accomplished by establishing multicast 

trees from every source to the predefined set of destinations. Since multicast trees 

shared between sources require higher connectivity, the shared tree connections are 

established prior to the disjoint set of trees. 

 

3.5.1. Shared Tree Generation 

    The network coded data would be sent on shared multicast trees.  Throughput and 

protection compromise would have yielded source sessions each with a different 

number of shared trees. Every source hence needs to be a part of a different number of 

disjoint trees. The same is accomplished using Shared Tree Generation algorithm. It 

involves two sub steps 
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1) Algorithm to ensure that every source is part of the required number of shared 

trees.   

2) Algorithm for finding out the multicast tree using the Steiner tree approach. 

 

Algorithm 3.6 (A-3.6) 

 

Algorithm Shared Tree Generation Algorithm  

This algorithm is used to establish the shared multicast trees. 

Input        Network Graph G 

              Destination Set T` 

      Source group set U 

Output     Shared trees Gh
 sh 

              Network Graph G` 

Step 1:Establishing Shared trees 

1   G`← G 

2   foreach h← 0 to q-1 do 

3        y ← 0 

4       V ← T` 

5        while(h < Ny-Ky ) 

6             V ←{ V ∪	Uy  } 

7             y ← y+1 

8        endwhile 

9       Find a Steiner tree Gh
 sh for vertices defined by V in G` 

10     G`← G` - Gh
 sh

    

11  end for 

 

Step 2: Finding a Steiner tree 

12    Select v` ∈ V 

13   V ← V -{ v` } 

14   Gh
 sh ←{ v` } 
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15   while(V ≠ ∅) do 

16         Select v` ∈V, g` ∈Gh
 sh   :  d( g`,v`) = min (d (g, v)) ,		∀ v∈V and  ∀ g∈Gh

 sh 

17         Gh
 sh ← Gh

 sh	∪ v` 

18        V ← V – { v` } 

19    end while 

  

 

3.5.2. Disjoint Tree Generation 

     In this step, the k primary disjoint set of trees required by every source are 25 

established. The multicast trees required are generated using the Steiner tree approach 

mentioned in the previous section. 

Algorithm 3.7 (A-3.7) 

 

Algorithm Disjoint Tree Generation Algorithm  

This algorithm is used to establish the disjoint trees required by every 

source.  

Input        Network Graph G` 

               Destination Set T` 

              Source group set U 

Output      Disjoint trees Gh
  

 

1   S``← ∅ 

2   foreach p	←1 to g 

3        S``← S`` ∪	Up 

4   end for 

5   foreach i	←1 to | S``| do 

6        V← T`∪ Si`` 

7    foreach h←1 to ki do 

8             Find a Steiner tree Gih  for vertices defined by V in G` 

9             G`← G` - Gih
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10       end for 

11  endfor 

 

3.6 Coefficient Selection  for Coding 

3.6.1 Vandermonde matrix 

     Throughput improvements are obtained by network coding data on the shared 

trees. Network coding is accomplished by selecting coefficients from the Vandermonde 

matrix. The structure of an x*y Vandermonde matrix is as shown below.  

 

 

 

 

 

 

 

     The coefficients (�is) are chosen randomly from a finite field (F) of size v≥x. Every 

shared protection path is assigned a unique �i. Data packets belonging to different 

sources but which will be transmitted on the same shared tree would use the �i 

assigned to it, albeit a different power (of �i) for each packet. ie 

∀�i1
j1, �i2

j2	∈ �i
j, 

i1 = i2, for all packets coded on the same shared tree, 

i1 ≠ i2, for packets coded on different shared trees. 

j1 ≠ j2, for all packets coded on the same shared tree. 

     The field size required for coefficient selection is established as follows. There are a 

total of s sources with k disjoint paths and n-k shared paths to a given destination. 

1 1 .. .. .. … 1 

�11    �21    .. .. .. …. �x1    

�12    �22    .. .. .. …. �x2    

.. .. .. .. .. …. .. 

.. .. .. .. .. …. .. 

�1y-1    �2 y-1   .. .. .. …. �xy-1    



www.manaraa.com

 

40 

Since there are k unknowns for every source, k*s equations are obtained from the 

various disjoint paths. But in these equations, the unknowns are sent without any 

coding on them and hence have a coefficient of 1.  Additionally, the shared paths will 

contribute another n-k equations in the best case (where all the source packets are 

combined into one packet for every shared path) or worst case (n-k)*s equations. 

Either way this results in n-k linearly independent equations at the receiver (because 

the (n-k)*s equations can be always be combined at the receiver to form n-k equations 

where every equation has a component belonging to every source).Hence the field size 

required would be n-k+1.We have to note here that for any given shared path, at a 

common node the packets can be combined in an exclusive manner (The example in 

the next section describes how this is accomplished). That is network coding at 

intermediate nodes is a trivial operation.  

 

3.6.2 Coefficient Assignment Example 

     Consider the case of two sources X and Y, each with three primary packets x1, x2, 

x3 and y1,y2 and y3 (represented by Columns 1-6 below in the coefficient matrix). Let 

n-k =1. The 7th and the 8th column in the below matrix are indicative of the shared 

packets which would be sent from X and Y respectively.       

 

 

 

 

 

 

1 0 0 0 0 0 1 0 

0 1 0 0 0 0 �71 0 

0 0 1 0 0 0 �72 0 

0 0 0 1 0 0 0 �73 

0 0 0 0 1 0 0 �74 

0 0 0 0 0 1 0 �75 
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 Note that since the n-k shares generated by sources will be linearly combined at the 

common node, we need not have a different � coefficient for column 8. (We can use a 

different power of �7 for the same.) 

So if any of the 7 paths breaks down, we will be able to recover the original data using 

the six linearly independent equations. 

The original packet matrix is   

[x1  x2  x3  y1  y2  y3]  

The coefficient matrix would be 

 

 

 

 

 

 

 

 

 

3.7 Time Complexity  

    In this section we discuss the time complexity of the algorithms mentioned 

previously. The notations which will be used are mentioned below for the readers’ 

reference. 

N  - Total nodes in the Graph 

|E| - Total number of edges in the graph 

Fmax - Maximum flow possible between any two nodes in the network. Since each edge 

is of unit capacity .the maximum flow can be equal to the number of edges (|E|) 

1 0 0 0 0 0 1  

0 1 0 0 0 0 �71  

0 0 1 0 0 0 �72  

0 0 0 1 0 0 �73  

0 0 0 0 1 0 �74  

0 0 0 0 0 1 �75  
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Algorithm 3.1 

This algorithm runs through all the destinations .Worst case time O(N). 

Algorithm 3.2 

The Ford Fulkerson Algorithm is used to calculate flow between every source and 

every receiver (O(N2)). The running time of Ford Fulkerson Algorithm for calculating 

max flow is O( |E|* Fmax) = O( |E|* |E|). Hence we have complexity for this algorithm 

as O(N2 * |E|2). 

Algorithm 3.4 

For Step 1, calculating max flows between the given source and all receivers will take 

O(N * |E|2). Generating all possible flow combinations will take O((Fmax)r) = O(|E|N). 

Calculation of O(Fa) (ordering of flow combinations) including calculation of P(Fa)and 

C(Fa) would be O(|E|2 + (|E|N log (|E|N)). The last step (3) takes O(|E|N). Total 

complexity here is O(N * |E|2 +(|E|2 + (|E|N log (|E|N)+ |E|N) =  

O(N * |E|2 + (|E|N log (|E|N)) 

Algorithm 3.3 

Lines 3 -9 will have the same complexity as algorithm 3.4 which is O(N * |E|2 + (|E|N 

log (|E|N)). Lines 16 – 22 will take O(N). These get repeated O(N) times. The 

complexity of this algorithm is O(N*( N * |E|2 + (|E|N log (|E|N)) +N)) 

=O(N2 * |E|2 +  N*(|E|N log (|E|N))) 

Algorithm 3.5 

Lines 16-22 will have the same complexity as algorithm 3.3. Line 5 will take a different 

complexity as the multicast flow is calculated using max flow and hence takes O(N * 

|E|2). Total Complexity is O(N*((N * |E|2)+N) = O(N2 * |E|2). 

Algorithm 3.6 

The Steiner tree calculation will take O(N3 * |E|). The total complexity is O(N4 * |E|). 
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Algorithm 3.7 

Taking into account the Steiner Tree calculation and that it runs for every source and 

every disjoint path, O(N5 * |E|) is the complexity. 

 

The total complexity of verifying all the constraints is given by 

O(N).+ O(N2 * |E|2) + O(N2 * |E|2 +  N*(|E|N log (|E|N))) +  O(N2 * |E|2) 

= O(N2 * |E|2 +  N*(|E|N log (|E|N))) 

The total complexity of building all the required paths is given by O(N4* |E|)+ O(N5* 

|E|) = O(N5 * |E|) 

 

3.8 Summary 

     In this chapter we discussed the problem in detail and established algorithms for 

the verification of flow constraints as well as for generating the multicast trees. We 

also looked at the coefficient assignment for network coding and the time complexity 

of the various algorithms. 
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CHAPTER 4.  SIMULATION RESULTS 

4.1.Introduction 

     We compare our scheme against the original (k,n) scheme of erasure coding . The 

proposed approach works better as demonstrated by results. We look at throughput, 

cost of provisioning multicasts sessions and the number of sources that the proposed 

approach can support in different network conditions. 

 

4.2  Cost of Provisioning Sessions 

     Since the number of disjoint trees has decreased because of sharing trees across 

source sessions, substantial reduction is seen in the cost for provisioning multicast 

sessions. We consider a scenario where the network connectivity is sufficiently high. To 

compare with erasure coding fairly, neither throughput compromise nor protection 

compromise is employed in this example. The number of nodes in the network chosen 

is 45 (N = 45) with an average Nodal Degree equal to 24. The experiment was 

repeated for a set of 50 random networks with the above characteristics. The total 

number of paths that had to be supported was six (n=6) and the number of disjoint 

paths was four (k=4). The multicast session provisioning costs are compared with 

erasure coding by varying the number of sources and destinations that need to be 

supported. The comparison is shown in the table 4.1 and also in Figure 4.1. The plot 

includes the mean as well as the confidence intervals for confidence levels of 95.  This 

confidence intervals is also shown in Table 4.2 (a).  The Figure 4.2 shows the savings 

that are obtained in terms of cost by the proposed scheme over conventional erasure 

coding. It can be observed that as the number of sources and destinations in the 

network increase, the savings also increase. For s=4, the savings for the proposed 
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scheme increases from 5% all the way up to 20% as destinations are added. This is 

understandable since the difference between the number of edges in the shared trees 

and the erasure coding’s extra disjoint trees will keep increasing with increase in the 

number of nodes that need to be supported. The hyphen (-) in the various tables 

indicate that the corresponding scheme could not support the particular configuration  

of sources and destinations.   

 

Table 4.1: Cost of Provisioning multicast sessions for Erasure Coding (EC) and the   

              proposed scheme - a combination of Erasure and Network Coding(EC+NC). 

 Table 4.2  Cost of Provisioning multicast session using proposed scheme with  

               confidence level of 95% 

                      Cost of Provisioning 

Dest(r) 1  2  3  4  5  6  

Sources(s) EC EC+NC EC EC+NC EC EC+NC EC EC+NC EC EC+NC EC EC+NC 

2 14.8 14.48 26.46 24.3 36.66 33.24 45.32 40.94 54.24 48.54 62.48 55.5 

3 22.24 21.34 39.96 35.7 55.62 48.4 69.62 60.28 83.46 71.26 96.54 81.74 

4 29.84 28.28 53.64 46.98 75.34 64.08 94.32 79.84 113.52 94.44 130.98 108.34 

5 37.68 35.26 67.96 58.8 95.84 80.16 - 99.58 - 117.82 - 135.46 

6 - 42.64 - 70.62 - 96.18 - - - - - - 

                  Cost of Provisioning with 95% CL 

Dest(r) 1  2  3  4  5  6  

Sources(s) 
Mean CI Mean CI Mean CI Mean CI Mean CI Mean CI 

2 14.480 0.138 24.300 0.419 33.240 0.501 40.940 0.536 48.540 0.579 55.500 0.600 

3 21.340 0.131 35.700 0.478 48.400 0.589 60.280 0.620 71.260 0.548 81.740 0.737 

4 28.280 0.136 46.980 0.606 64.080 0.632 79.840 0.643 94.440 0.699 108.340 0.874 

5 35.260 0.134 58.800 0.703 80.160 0.736 99.580 0.760 117.820 0.812 135.460 1.030 

6 42.640 0.281 70.620 0.786 96.180 0.976 - - - - - - 



www.manaraa.com

 

46 

 

 

Figure 4.1 Comparing cost of provisioning multicast session for Erasure Coding (EC)  

            and proposed approach- a combination of Network and Erasure Coding 

 

4.3. Throughput  

     The proposed approach allows for compromise in throughput and protection. If the 

number of sources is large and cannot be supported at the given protection and 

throughput, the scheme allows us to take the following directions. 
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1) Reduce throughput in order to accommodate the source (Tc), 

2) Reduce the amount of protection offered to the source (Pc), or 

3) Reduce throughput and protection (Tc+Pc) 

 

 

Figure 4.2  Cost Savings of proposed Scheme over erasure coding. 

    A measure of how good these approaches work is determined using mean 

throughput obtained while supporting as many sources and destinations as possible. 

The random networks chosen for this scenario consisted of 40 nodes with an average 

nodal degree of 20. Two types of simulation setups are considered.  

a) In the first case, the variance of throughput with increase in number of destinations 
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b) In the second case, the number of sources was changed. There are four destinations 

to which data has to be multicasted and n=6, k=4. 

     For case (a), the mean throughput for the proposed scheme is better than the 

original erasure coding scheme. The increase in the number of destinations does not 

affect the throughput too much. Our approach involving throughput and protection 

compromise performs better than all the other approaches. Table 4.3 shows the 

performance of the various approaches .The same is plotted in Figure 4.3.  

 

  Mean throughput(Data Units) 

Num of 

Destinations 
EC EC+NC EC+NC+Tc EC+NC+Tc+Pc 

5 2.19 2.955 2.955 2.955 

6 2.13 2.865 2.885 2.885 

7 2.055 2.535 2.565 2.645 

8 1.815 2.535 2.565 2.66 

9 1.77 2.175 2.265 2.425 

10 1.71 2.205 2.26 2.41 

 

Table 4.3 Comparison of Mean throughput/source with variable destinations for 

             a) Erasure Coding (EC)  

             b) Erasure Coding + Network Coding (EC+NC)    

             c) Erasure Coding+ Network Coding+ Throughput Compromise (EC+NC+       

             Tc)  

             d) Erasure Coding+ Network Coding+ Throughput Compromise+    

             Protection Compromise (EC+NC+Tc+Pc) 
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Figure 4.3  Plot of Mean throughput/source with variable number of destinations for 

               EC, EC+NC, EC+NC+Tc, EC+NC+Tc+Pc 
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not compromise throughput to support more sources which either approaches do. As is 

evident from the  Table 4.4 and Figure 4.4,  EC+NC+Pc always does better than the 

other approaches.  

 

Table 4.4 Comparison of Mean throughput/source with variable number of sources 

            for EC, EC+NC, EC+ NC+ Tc,  EC+NC+Tc+Pc and EC+NC+Pc 

 

4.4. Sources supported for multicasting 

    While the basic scheme of EC+NC attempts to decrease the cost of provisioning 

the multicast sessions, other approaches like EC+NC+Tc try to maximize the number 

 
Mean Throughput(Data Units) 

Num of 

Sources 
EC EC+NC EC+NC+Tc EC+NC+Tc+Pc EC+NC+Pc 

3 2.853 3.867 3.867 3.867 3.947 

4 2.260 2.100 2.370 2.830 3.040 

5 1.696 1.568 1.824 2.296 2.416 

6 1.440 1.147 1.347 1.837 1.973 

7 1.223 1.051 1.274 1.651 1.703 

8 1.080 1.140 1.380 1.503 1.490 

9 0.987 1.120 1.260 1.331 1.316 

10 0.888 1.016 1.138 1.192 1.192 

11 0.785 0.960 1.058 1.091 1.091 

12 0.670 0.873 0.988 1.002 0.987 
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of sources that could be supported. Essentially they try supporting those sources that 

cannot meet the required constraints of EC+NC. Since throughput compromise is 

something that can be implemented for the original erasure coding too, it will be 

interesting to see how the two algorithms (EC and EC+NC) fare w.r.t supporting 

maximum number of sources given both are allowed to compromise their throughput 

 

 

Figure 4.4  Plot of Mean throughput/source with variable number of sources 

              for EC, EC+NC, EC+ NC+ Tc,  EC+NC+Tc+Pc and EC+NC+Pc 
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destinations is 3 (r=3). If the number of destinations is allowed to be reduced, then 

both the approaches would be able to support more sources. Hence the comparison is 

given for both cases, with and without destination reduction. 

a) The focus is on supporting as many sources as possible in spite of reduction in 

supported destinations. 

b) Max number of sources that can be supported such that all the destinations are still 

part of the scheme. 

     For case (a), EC+NC+Tc is able to support around 10 sources when the 

protection n-k is 1, whereas EC+Tc is able to support only 8 sources. As the 

protection increases, the EC+NC+Tc supports many more sources than EC+Tc. For 

a protection of n-k =3, EC+NC+Tc supports 8.5 sources on the average whereas 

EC+Tc is able to support only 3.6 sources, i.e., EC+NC+Tc  is able to support more 

than 135% of what EC+Pc can support. The difference between the number of sources 

supported by EC+NC+Pc  and EC+Tc almost remains constant following this. Figure 

4.5 (a) shows the plot and Table 4.5 (a) compares the actual values of sources 

supported .The graph also indicates the confidence interval range values for a 

confidence level of 95%. (MIN_95_CL, MAX_95_CL) 

     For case (b), EC+NC+Tc is able to support an average of around 8 sources when 

the protection n-k is 1 ,whereas EC+Tc is able to support only 6 sources. A fairly 

constant difference of around 3 sources is maintained between EC+NC+Tc and 

EC+Tc .This can be seen in the plot shown in Figure 4.5 (b) and the actual values in 

table 4.6 (b).The confidence interval range value for 95 % confidence level is also 

plotted on the graph for reference. (MIN_95_CL , MAX_95_CL) 
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  NUM OF SOURCES SUPPORTED 

  EC+NC+Tc EC+Tc 

Protection(n-k) Mean MIN_95_CL MAX_95_CL Mean MIN_95_CL MAX_95_CL 

1 9.86 9.74899 9.97101 7.9 7.81684 7.98316 

2 9.44 8.94989 9.93011 5.8 5.68913 5.91087 

3 8.46 8.19292 8.72708 3.6 3.46421 3.73579 

4 8.1 7.46975 8.73026 3.8 3.68913 3.91087 

5 6.62 5.96666 7.27334 2.54 2.40185 2.67815 

6 6.94 6.29252 7.58748 2.8 2.68913 2.91087 

 

Table 4.5 (a) Comparison of Number of sources supported with flexible number of   

                   destinations for EC+NC+Tc and  EC+Tc 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 (a) Plot comparing number of sources supported with flexible number of   

                   destinations for EC+NC+Tc and  EC+Tc 
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 NUM OF SOURCES SUPPORTED 

  EC+NC+Tc EC+Tc 

Protection(n-k) Mean MIN_95_CL MAX_95_CL Mean MIN_95_CL MAX_95_CL 

1 8.1 7.98571 8.21429 5.98 5.94119 6.01881 

2 7.54 7.19732 7.88268 4.68 4.5507 4.8093 

3 6.84 6.58986 7.09014 3.6 3.46421 3.73579 

4 5.66 5.02644 6.29356 2.94 2.87417 3.00583 

5 5.48 5.11127 5.84873 2 2 2 

Table 4.5 (b) Comparison of Number of sources supported with fixed number of   

                  destinations for EC+NC+Tc and  EC+Tc 

 

 

Figure 4.5 (b) Plot comparing number of sources supported with fixed number of   

                   destinations for EC+NC+Tc and  EC+Tc 
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4.5 Summary 

In this chapter we looked at the performance of the proposed approach against 

conventional erasure coding .Specifically we compared the results for savings in cost, 

throughput and number of sources that could be supported by the two approaches. 

We saw that the proposed approach along with the enhancements of throughput and 

protection compromise does reasonably well job of providing protection at a reduced 

cost. We saw throughput savings of up to 20% compared to erasure coding. We also 

saw that the proposed scheme was able to support more than 100% of the sources 

supported by erasure coding. 
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CHAPTER 5.   CONCLUSIONS AND FUTURE RESEARCH 

5.1 Proposed Approach Discussion 

     We have proposed an approach that enables packets from multiple sources to be 

network coded and sent to multicast destinations. It uses the principle of erasure 

coding where k out of  copies are required at the receiver to be able to decode the data 

The scheme supports breakdown of any n-k paths of a source at any given time. The 

recovery is done by utilizing the packets obtained on the primary and shared paths of 

other sessions. This necessitates that the primary paths of all sources are disjoint. The 

advantages using our implementation can be briefly described as follows. 

1) Throughput savings obtained by network coding packet belonging to different 

sources. Simulations show an average of 20% savings in bandwidth 

(provisioning costs). 

2) Ability to support sources that cannot meet the stricter flow constraints of the 

basic scheme, by way of reduced throughput or protection. Hence certain 

sources can take part in the multicast sessions in spite of having lower 

connectivity. 

3) The network coding at the intermediate nodes is simple xoring and can be 

accomplished using a Field of size (2). Additionally Field size for generating 

coded packets at the source is small. 

4) The recovery of source packets at the receiver can be instantaneous providing 

proactive protection to the source sessions. 

 

The drawbacks of the scheme include 
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1) The proposed scheme imposes a high connectivity requirement on the network. 

Every source needs to have k disjoint paths to the destination set .Also there 

needs to be n-k shared trees between the various sources and destination set.  

2) Cannot handle sources with different destination requirements as it will result 

in pollution. (Receivers will receive data from sources they don’t need data 

from.) 

 

5.2 Future Work 

     The future work that could be having sessions that can have different number of 

destinations for every source. That is destinations can tolerate a certain amount of 

pollution as long as their guaranteed the required protection. Also, in this scheme we 

consider cases where n and k are different from what is specified (Throughput and 

Protection compromise). Instead of making it a special case, extensions can be made to 

the existing scheme to be able to support any value of n and k provided the source 

meets the necessary constraints.  
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